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Abstract 

Computational models are a means to develop explanations for the mechanisms 
underlying human behavior and behavioral change.  Specifically, one type of 
computational models, artificial neural networks, has been used widely in modeling 
children’s language and cognitive development. These models can learn from their 
experience with an environment and are sensitive to the environment’s statistical 
structure, making them ideally suited to investigating how statistical learning can 
account for aspects of word learning across all levels, from the earliest phoneme 
acquisition to the development of the bilingual lexicon. Here we first describe the 
general principles underlying artificial neural network models with a goal of making 
them accessible to readers without experience with computational modeling. We then 
review the most common model architectures that have been used in simulating 
children’s word learning in the broad context established in the other chapters of this 
volume. Finally, we review a number of specific models of word learning and discuss 
their contributions to our understanding of the mechanisms underlying early word 
learning, and the factors that shape this process in infants and toddlers. 
 

Introduction 
 
Computational models of word learning have made important contributions to 
understanding the mechanisms underlying this process. Different models have 
addressed virtually all the aspects of word learning discussed in the other chapters of 
this book, from learning speech sounds and segmenting words from speech, to 
mapping words to objects and acquiring a lexicon. In this chapter we first motivate 
the computational modeling approach and discuss what it can contribute to our 
understanding of cognitive development in general, and to word learning in particular. 
We then explain the basic principles of one widely used type of computational model, 
artificial neural networks. Finally, we review and evaluate several word learning 
models and their contributions to our understanding of this process.  
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Why computational modeling? 
 
Computational models are computer programs that mimic some aspect of 
psychological processing. If their performance matches human behavior on a set of 
defined criteria, the mechanisms implemented in the model can serve as an 
explanation for the simulated human behavior. One way to look at a model is as a 
restricted artificial organism with a very limited set of specific behaviors. Such a 
model can be exposed to data similar to that experienced by humans in an 
experimental task (such as a speech segmentation task) or in their natural environment 
(such as hearing parental language), and the performance of the model (e.g., looking 
times in response to a set of stimuli) can then be compared with human data. It is then 
possible to manipulate the model, for example, by changing its internal processing 
mechanisms or the data to which it is exposed, to examine changes in performance. 
This approach can lead to predictions about human behavior in new situations which 
can be tested in experiments with human participants. In developmental psychology, 
computational models are often used to account for the change in cognitive abilities 
across age, allowing researchers to examine the effects of accumulating experience 
and changes in learning processes on the observed developmental trajectories.  
 
One class of computational models that have been particularly powerful in furthering 
our understanding of cognitive development, and on which we focus in this chapter, 
are artificial neural network models, also called connectionist models (Mareschal & 
Thomas, 2007; Munakata & McClelland, 2003; Quinlan, 2003; Westermann & 
Plunkett, 2007). On a relatively abstract level these models are inspired by the 
functioning of neural networks in the brain. The basic idea here is that cognition 
arises from the complex interactions of many simple processing units (neurons in the 
brain). Consequently, connectionist models aim to show precisely how network 
structure, processing mechanisms and experience with the environment can give rise 
to such high level processes. The most important property of connectionist models is 
that they can learn from experience with the environment (as detailed in the next 
section), making them ideally suited to model children’s cognitive development as an 
interaction between internal learning processes and experience with an environment.  
 
A large number of connectionist models have been applied to various aspects of word 
learning (e.g., Althaus & Mareschal, 2013; Aslin, Woodward, LaMendola, & Bever, 
2006; Li, Altmann, Hare, McRae, & Plunkett, 2007; Mayor & Plunkett, 2010; 
McMurray, Horst, & Samuelson, 2012; Räsänen, 2011; Samuelson, Schutte, & Horst, 
2009; for an overview see Westermann, Ruh & Plunkett, 2009). These models suggest 
how such diverse empirical findings as a vocabulary spurt, overextensions of 
meaning, the effect of labels on object categorization and many others can arise from 
general learning mechanisms. This chapter will review such computational 
approaches to word learning with a focus on artificial neural networks that link 
cognitive development to processes in the brain.  
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We first describe the principles of artificial neural networks and specifically the three 
most common types used in models of word learning. Instead of focusing on the 
minutiae of the models’ functioning we hope to achieve two things: first, we discuss 
the overall design decisions that modelers face when developing a model. This point 
is often neglected but we think it might be interesting to non-modelers in helping to 
assess the usefulness of a model. Second, we discuss the general principles and 
contributions made by models to our understanding of numerous aspects of word 
learning discussed in other chapters in this book.  
 
Principles of artificial neural networks 
 
Artificial neural networks (ANNs) consist of often large numbers of simple 
processing units with weighted connections between these units. Although a variety 
of specific modeling paradigms exist, they share some common principles. In all 
models the units can be activated, and activation then flows through the connections 
to other units. How much activation flows through a connection depends on the 
strength (weight) of this connection, which can be positive or negative (or indeed, 
zero). Each unit typically sums up the activation it receives through these connections 
(or directly from the environment), and if this activation is greater than a certain 
threshold, or if it falls within a certain range, the unit becomes active itself and in turn 
sends activation through its outgoing connections. ANNs are loosely inspired by the 
basic principles of the functioning of biological neurons in the brain. These neurons 
receive activation through synaptic connections with other neurons, and if this 
incoming activation exceeds the neuron’s firing threshold it creates a spike that then 
travels through its axon to the synaptic connections with further neurons.  
 
Despite these superficial similarities between artificial and biological neural 
networks, ANNs should not be seen as attempts to implement the specific biological 
networks underlying cognitive development and processing – the function of 
biological neurons is of course far more complex than the described principles, and 
the number of neurons involved in a specific function in the brain are by several 
orders of magnitude larger than the number of units in even the largest ANNs. 
Nevertheless, ANNs show how even complex cognitive functions can emerge from 
the interactions of large numbers of simple nonlinear associative processors.  
 
The most important property of ANNs for modeling cognitive development is their 
ability to learn from experience. Learning occurs through changes to the weights of 
the connections between neurons, resulting in changes in the activation patterns 
across the network. Different types of models vary in the specific way in which 
weights are updated, and they will be discussed below.  
 
How a model experiences the world 
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Information is presented to neural network models in the form of strings of numbers 
that translate into the activation values of input units. For example, phonemes are 
often encoded by the presence or absence of phonetic features such as voiced, labial, 
plosive for consonants, and frontal and low for vowels. An input will include all 
possible features, set to 1 when the feature is present, and to 0 otherwise. Similarities 
between inputs can therefore easily be represented. For example, the only difference 
between the representations for /p/ and /b/ is that the ‘voiced’ feature is set to 0 for /p/ 
and to 1 for /b/, while both phonemes have 1s for ‘bilabial’ and ‘plosive’ and 0 for all 
other features (depending on the specific feature description). Representations such as 
these, where similarities are reflected, are called distributed representations and they 
are chosen when similarity is assumed to play a role in processing (e.g., in modeling 
mispronunciations, priming, or categorization). In contrast, localist representations 
allocate a separate input for each item, for example, a word in a model of word-object 
mapping. This encoding scheme assumes that similarities between different inputs are 
irrelevant for the simulated process (such as mapping two distinct words to two 
distinct objects).  
 
Another important aspect of computational models is the statistical structure of the 
environment. As discussed, neural network models learn from experience, and the 
more often a specific input or a class of inputs is experienced the more the model 
learns from it. Therefore, many models of word learning aim to reflect the statistical 
structure of a child’s experience. For example, a model of vocabulary development 
could present words to the model according to the frequency with which these words 
are uttered to children (gleaned from corpora of child directed speech).  
 
Together, these factors show that the modeler has to make specific assumptions at 
each step of the modeling process. A computational model thus not only comprises 
the processing architecture but also the representation scheme of environmental 
information and the statistical structure of the environment of the system – an aspect 
that is sometimes forgotten when discussing and evaluating models. 
 
We will now discuss the most common types of ANN that form the basis for many of 
the models of word learning.  
 
Supervised learning 
 
In supervised learning a model receives an input and has to learn to generate a 
specific output as a response. Supervised models are usually arranged in a layered 
structure with an input layer that receives information from the environment, an 
output layer that generates a response, and a variable number of intermediate 
(‘hidden’) layers (often just one; Figure 1). Often all units in one layer send outputs to 
all units in the next layer through weighted connections: strong connections send 
more information than weak ones. There can also be negative connection values so 
that one unit can inhibit the activation of a downstream unit. Recent ‘deep learning’ 
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models contain many more hidden layers but work on the same basic principles as 
these simpler models (Zorzi, Testolin, & Stoianov, 2013).  
 

 
Figure 1: A three-layer neural network. This illustrative model learns the mapping 
from a set of features to an animal. Activation values are indicated by grayscale. 
Whole some activations on the input layer are binary (e.g., 4 legs: yes/no), other are 
continuous (e.g., width). On the output layer several units can be activated to different 
degrees, reflecting the uncertainty of the model.  
 
 
When an input is presented to a supervised model, the respective units on the input 
layer are activated and send activation to the hidden layer. Each unit in the hidden 
layer sums up the incoming activation and computes its own activation value as a 
function of this incoming activation. The hidden units then send their activation 
through outgoing connections to the output layer. There again, units become active as 
a function of their incoming activation. The pattern of output unit activations is then 
interpreted by the modeler as a response.  
 
In a supervised model the pattern of output activations is compared with a desired 
(target) pattern. Then, for each unit the incoming weights are adjusted so that the 
actual output will become closer to the target output. In effect, when a unit’s output is 
lower than the target value, its incoming connections from active units are 
strengthened. Conversely, when the output is higher than the target, connection 
weights are weakened. The most popular weight change algorithm that enables this 
process for multiple network layers is the backpropagation algorithm (Rumelhart, 
Hinton, & Williams, 1986). In effect, this algorithm sends error signals backwards 
through the network to generate target values for the internal (hidden) units that do 
not have an explicit target from the environment.  
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Figure 2: A simple recurrent network. This model is here presented with an 
unsegmented sequence of phonemes and has the task to predict the next phoneme in 
the stream.  
 
 
An interesting extension to ‘feed-forward’ supervised models are those with recurrent 
connections from higher to lower layers (Figure 2). This apparently simple 
modification profoundly affects the processing characteristics of a model: now it can 
represent time and thereby process sequences. In the most common model, the Simple 
Recurrent Network (SRN; Elman, 1990), the hidden activation pattern for one input is 
presented to the input layer alongside the next input. Therefore, the way in which a 
model processes a specific input is affected by the previous input and becomes 
context dependent: the same input in two different contexts (i.e., with two different 
previous inputs and therefore two different hidden unit activation patterns) will lead 
to different activation patterns across the network. Recurrent models are presented 
with sequences of inputs and often the task of such a model is to predict the next item 
in the sequence (i.e., produce the next upcoming input on the output layer, before this 
input is actually presented to the model) – a task that is impossible to get correct all 
the time, but since predictability of the next item in a sequence often varies (such as in 
sentences: compare ‘She __’ and ‘She switched on the __’), the model’s prediction 
accuracy at each step is informative.  
 
Unsupervised learning 
 
In unsupervised learning there is no target for learning. Instead the model learns 
independently, from the environmental information. One way in which this can 
happen is through Hebbian learning. Here, a connection between two units is 
strengthened when both units are active at the same time. Hebbian learning is thus 
well suited for learning associations between stimuli. Variations of this process exist: 
for example, connections can be weakened when the two units are active at different 
times, or they can decay when no unit activation occurs. 
 
A second type of unsupervised learning that is often used in models of word learning 
is the self-organizing feature map (Kohonen, 1998). Here, units are arranged on a 
two-dimensional map (Figure 3). Inputs are presented to an input layer and activation 

/th/ /e/ /b/ /oy/                              /i/                                                         /s/ /l/ /U/ /k/ i/ /N/ /a/ /t/          

input layer

output layer

hidden layer

copy of hidden layer
at previous time step

/th/ /e/ /b/ /oy/ /i/                             /s/                               /l/ /U/ /k/ i/ /N/ /a/ /t/          
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flows through connections to all units on the map. The unit on the map that is 
maximally responsive to a specific input then changes its incoming connection 
weights so that at the next presentation of the same input, it will respond even more 
strongly. Importantly, all units in a predefined radius or neighborhood around this 
winning unit also change their weights in a similar way. Thus, regions on the map 
become responsive to similar inputs. The update radius is gradually reduced during 
learning so that learning becomes progressively more fine-grained.  
 

 
Figure 3: A model that consists of two self-organizing feature maps that are linked 
with Hebbian connections. In this illustrative example the model learns, through co-
occurrence, the link between a word and its meaning. On the phonological map, 
similar-sounding words cluster together, whereas on the semantic map, concepts with 
overlapping meanings are clustered.  
 
 
The final structure of a SOM reflects the statistical structure of the environment and 
similarity relationships between inputs. For example, a map that is trained on 
phonemes would usually develop one region for consonants and one for vowels 
(because of overlapping and distinct feature-based representations of both classes). 
Within each region, similarities between phonemes would be reflected, with similar 
phonemes located close together. This type of learning therefore only makes sense 
with distributed representations where similar inputs have overlapping activation 
patterns.  
 
Self-supervised learning 
 
Self-supervised learning falls between supervised and unsupervised learning. Here, 
the model is trained as in supervised learning, but it extracts the target without need 
for an external teacher. For example, in auto-encoder models the target is the same as 
the input: the model has to learn to reproduce its input on the output layer. This is a 
useful task because in order to do so, the model has to extract and represent 
regularities in the input. As a consequence the model also learns to generalize what it 
has encountered to new information in meaningful ways. For example, when 

/tUk//bUt/

/lUk/
/bUk/

/bUk/ [ book ]
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[ text ][ book ]
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familiarized with a category of items, the model can generalize this learned category 
when tested with a novel object (Mareschal & French, 2000). The activation patterns 
of the hidden layer in the network can then be examined to understand how the model 
internally represents such information. Typically, as in SOMs, similar inputs lead to 
similar activation patterns of the hidden units.  
 
Several other types of ANN exist, but those described here capture the majority of 
models of the various stages of word learning.  
 
We now turn to a description of the contributions that specific models have made to 
our understanding of various aspects of word learning. While we focus on ANNs, we 
also discuss related models which employ different frameworks to illustrate ways in 
which different modeling techniques can be used to simulate the same phenomenon, 
and consequently make different predictions about the mechanisms driving infants’ 
learning. 
 
Learning speech sounds 
 
As described by Benders and Altvater-Mackensen (this volume), the first task of the 
language learner is to develop a phonemic repertoire of the native language. 
Computational models have simulated this process to investigate the links between 
perception and production and the role of parental reinforcement in this process. 
Westermann & Miranda (2004) directly addressed the interactions between the 
auditory and motor system in shaping a speech sound repertoire. The model consisted 
of two neural maps. A motor map contained neurons that activated a number of 
articulatory “muscles” in a speech synthesizer simulating human speech production. 
An auditory map was activated by heard vowel sounds. Both maps were linked with 
Hebbian connections that were strengthened when motor and auditory units were co-
active. The model babbled by randomly generating motor settings and producing the 
resulting sound, and as a consequence the links between motor settings and their 
resulting sounds were reinforced. Importantly, activation flowing through the 
between-map links affected the representations on each map so that articulatory-
auditory pairs that were produced with high reliability became prototypical. In this 
way, non-linearities in the articulation-sound mappings biased the model to 
preferentially produce and perceive certain sounds. The model also learned to adapt to 
an external language environment: speech sounds that were experienced in the 
environment selectively strengthened connections from the relevant auditory units to 
their associated articulatory settings. As a consequence, over time speech sounds 
produced by the model came to reflect to the speech sounds in the environment. The 
process implemented in this model provided a mechanistic explanation of the 
articulatory filter hypothesis (Vihman, 1993) according to which the sounds an infant 
itself produces are more salient to that infant than sounds not in its speech sound 
repertoire. 
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A shortcoming of the Westermann & Miranda model was that it did not account for 
the speaker normalization effect, in which different speakers’ phonemes are perceived 
equivalently despite between-speaker variability (e.g., Bladon, Henton, & Pickering, 
1984); rather, the model assumed that self-generated sounds were perceived in exactly 
the same way as sounds produced by external speakers. Other models which have 
aimed to account for this effect by integrating a parent’s reinforcement demonstrate 
that characteristics of parental input play an important role in shaping infants’ early 
vocalizations (Warlaumont, Westermann, Buder, & Oller, 2013, Yoshikawa, Asada, 
Hosoda & Koga, 2003). 
 
Segmenting words from a continuous stream 
 
As described by Junge (this volume), words do not occur in isolation in the child’s 
environment; rather, they have to be segmented from a continuous auditory stream. 
One way in which this complex ability can be achieved is by exploiting the statistical 
regularities of language at different levels: differences in the probability of one 
phoneme following another can be reliable cues for word boundaries. On the level of 
whole words, transitional probabilities between different words can enable the 
detection of the grammatical class of a word.  
 
The idea that phonotactic probabilities are cues to word boundaries was explored by 
Elman (1990) using the first SRN model. The model was trained on a simple artificial 
corpus of phoneme strings with no indication of word boundaries. The model saw the 
current phoneme as input and had the task of predicting the next phoneme in the 
sequence. Elman found that the model’s prediction error (that is, the uncertainty about 
the next phoneme) was usually high at the beginning of words and then decreased 
within a word. Thus, as the model learned the phonotactics of language, peaks in 
network error coincided with word boundaries because they formed the least 
predictable instance within the language stream.  
 
The seminal Elman (1990) model was subsequently improved upon, most notably by 
Christiansen and colleagues (Christiansen, Allen, & Seidenberg, 1998). Their model 
was also an SRN but used as input a real corpus of child directed speech which not 
only provided phonemic information but also relative lexical stress and utterance 
boundaries. While these three cues individually were not reliable indicators, when 
they were learned together the model could accurately predict word boundaries. 
Importantly, this model showed how the combination of accessible but unreliable 
statistical cues can together provide reliable cues for aspects of language for which 
there is no direct evidence in the input, and that an associative learner can extract this 
information from the language input. The focus on using actual language data on the 
statistical cues inherent in language – and on the powerful ability of statistical learners 
to extract and use this information – have been important drivers in the move away 
from the Chomskyan argument of the ‘poverty of the stimulus’ and the inevitability of 
domain-specific innate language abilities (Chomsky, 1957).  
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Mapping words to objects 
 
An intuitive approach to learning word-object mappings is to imagine a pool of words 
and a pool of objects. Word learning then consists in establishing links between an 
element in the word pool and an element in the object pool (see Figure 3). Pioneered 
by Miikkulainen (1993, 1997), this approach has been directly instantiated in a 
number of models based on self-organizing feature maps where units on one map 
become linked to units on the other through Hebbian learning and has since been 
adopted by others (e.g., Mayor & Plunkett, 2010). The most advanced developmental 
word learning model based on linked feature maps so far is DEVLEX (Li, Farkas, & 
MacWhinney, 2004) and its extension DEVLEX II (Li, Zhao, & Mac Whinney, 
2007). The DEVLEX models explored the effects of the detailed statistical properties 
of the input heard by children on their lexical development. DEVLEX II consisted of 
three linked SOMs. A phonological map received word forms that were based on 
phonetic feature vector representations. A semantic map contained semantic concepts 
derived from large corpora of language. Finally, an output sequence map learned to 
generate sequences of phonemes to produce words. The model was trained on word-
object pairings so that representations formed on the respective maps. In parallel, 
links between the maps were trained with Hebbian learning to strengthen for co-
occurring words, semantic concepts and phoneme sequences.  
 
Word comprehension in the model was simulated by presenting a word to the 
phonological map. The maximally active unit on this map then propagated activation 
through the Hebbian links to the semantic map, activating a unit that represented a 
semantic concept. Production was modeled by propagating activation from the 
semantic to the phonological output map. Training data was based on real input to 
children, using 591 words from the MacArthur-Bates CDI (Fenson et al., 1993), 
including verbs, adjectives, nouns from different categories, and closed class words. 
Word meanings were represented by the distributional co-occurrence statistics of the 
target word in parental input to children (from CHILDES transcripts). These 
representations were learned and enriched gradually as learning progressed. During 
learning, words were presented to the model depending on their frequency in parental 
input.  
 
DEVLEX II demonstrated the feasibility of simulating word comprehension and 
production in an associative model, modeling a range of phenomena observed in 
children’s lexical development. First, it displayed a vocabulary spurt in the form of a 
phase of rapidly increasing word-meaning mappings after initial slow learning. This 
emerged from the simultaneous learning of organization within each map and 
connections between them: once a basic organization on the maps had been achieved, 
inter-map connections could be learned rapidly and accurately. Furthermore, the 
model showed a lag in word production relative to comprehension and individual 
differences between iterations of the model in the onset of the vocabulary spurt. These 
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differences were linked to the specific learning experiences of the model, with 
exposure to short and frequent words leading to an earlier onset of the spurt.  
 
During word production the model generated errors that are commonly found in 
word-learning children, such as leaving out final consonants (e.g., ca for cat) or 
consonants from consonant clusters (mile for smile), and substitution of consonants 
(birb for bird). These errors arose from incomplete sequence learning on the output 
map and incomplete links from meaning to words. Importantly, then, as well as 
capturing children’s word learning trajectories DEVLEX II also offered a mechanism 
for the errors they make during this process. 
 
DEVLEX II nicely illustrated how a model can be seen as an artificial learner 
embedded in the same environment as a developing child: by simulating a realistic 
learning environment (within the confines of a disembodied learner), it provided 
insights into how the precise structure of the child’s experience can shape the learning 
process. Subsequently DEVLEX II has also been applied to bilingual word learning 
(Zhao & Li, 2010) to investigate how differential onset of the two languages affects 
structure and interaction of phonological and semantic representations on the 
respective maps. 
 
A different approach to learning word-object mappings was taken in Westermann & 
Mareschal, 2014 (for an earlier related model see Plunkett, Sinha et al., 1992). In 
feature map based models the representations that develop on each map are 
unaffected by the links between the maps. Nevertheless it is possible that the different 
aspects of an object representation – visual appearance, auditory and functional 
features, the object name etc., become integrated so that different features can affect 
each other. For example, research with adults suggests that objects that share a name 
are perceived as more similar than the same objects if they do not share a name 
(Lupyan, Rakison, & McClelland, 2007). In development it has been found that labels 
affect how infants represent visual objects: they group together objects that share a 
common label and separate similar objects that have different names (Althaus & 
Westermann, 2016; Gliozzi, Mayor, Hu, & Plunkett, 2009; Plunkett, Hu, & Cohen, 
2008). Therefore, Westermann and Mareschal (2014) modeled how developing 
mental representations can be affected by common labels using an auto-encoder 
neural network. The way in which representations of different objects relate to each 
other can be assessed by examining the activation profiles of the hidden units: 
activation patterns for objects perceived as similar will cluster together (see also 
Rogers & McClelland, 2004).  
 
Westermann & Mareschal (2012, 2014) provided their model with feature-based 
representations of 26 different object categories from four superordinate categories. 
When trained without language, the model developed object representations that were 
based on the visual similarity between objects. But when the model was enhanced by 
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units encoding the category name for an object, the representational space in the 
model became warped to that objects with different labels became more dissimilar.  
 
This and other models also address the issue of the status of labels in early word 
learning. Two contrasting theoretical standpoints have been put forward. According to 
one, labels are qualitatively separate from the perceptual representation of objects and 
refer to these objects (Waxman & Gelman, 2009). This viewpoint is expressed in 
models that have separate maps for labels (e.g., Mayor & Plunkett, 2010; Li et al, 
2007). According to another theory, labels, at least in very early word learning, are 
mere features of objects at the same representational level as other perceptual 
features. This viewpoint was instantiated in a model by Gliozzi et al (2009) in which 
visual features and object labels fed into a single map that developed holistic object 
representations. The Westermann & Mareschal (2014) model implemented a third 
view: here, labels were separate from visual object descriptions but through learning 
became closely integrated with them, leading to an object representation that took 
account of visual similarity modulated by the label. The status of labels in object 
representations remains a topic of ongoing research (e.g., Deng & Sloutsky, 2015) 
and predictions made by different models will likely be able to advance our 
understanding about this aspect of word learning.  
 
Word-object mapping: hypothesis testing or association?  
 
The discussed models of learning word-object mappings all have assumed that the 
mapping to be learned is unambiguous: at each time, there is only one object and one 
word present from which to learn. While this simplification has been useful to further 
our understanding of lexical structure and the learning mechanisms involved, in the 
real world a word learning situation is often more ambiguous with several possible 
referents for a heard word (see Monaghan, Kalashnikova & Mattock, this volume). 
While it has become clear that infants can track the co-occurrence probabilities 
between words and objects across learning situations and therefore resolve this 
ambiguity there has been controversy about the mechanism underlying this ability.  
 
One view argues that infants have implicit, relatively sophisticated a priori 
hypotheses about co-occurrence statistics and the probability that a word refers to a 
specific object, and that they test and confirm or reject these hypotheses based on 
some inference procedure, making a probabilistically optimal word-object mapping. 
This mechanism has been implemented in probabilistic, Bayesian models. These 
models are based on prespecified probability distributions that determine the model’s 
“decision-making” process; in this case, probabilities of words mapping to a 
particular referent. For example, Xu & Tenenbaum (2007) presented a Bayesian 
model which captured 4-year-old children’s novel category label generalization in an 
empirical study which manipulated whether children themselves or the experimenter 
selected exemplar objects during training. The authors argued that the behavior seen 
in their empirical study cannot be accounted for by associative learning since their 
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manipulation did not alter the statistical structure of the learning environment – and if 
all an associative learner does is to extract the statistics from the environment this 
would not lead to different learning outcomes for these two conditions. Instead, they 
argued, their empirical results depended on a process of hypothesis testing. 
Specifically, the difference in training experience between the two groups (i.e., 
experimenter demonstration vs. independent choosing) had shaped children’s 
hypotheses about the possible referents of the label, producing the contrasting 
generalization patterns seen at test. More generally, since the model was equipped 
with predetermined prior probabilities, this reflects a learning situation in which 
children have substantial prior knowledge, without, however, addressing where this 
prior knowledge may have come from. 
 
An opposing view argues that correct word-object mappings (and the prior knowledge 
necessary to learn them) can be formed through associative learning. Yu (2008) 
presented a simple statistical associative learner that counted the co-occurrences of 
labels and their referents across learning events and calculated probabilities from 
these. The model received real linguistic input, consisting of a corpus of transcribed 
speech elicited from parents in a storybook narration task, and visual input, consisting 
of a list of the objects visible in the storybook at the time a given utterance was made. 
For each of these “scenes”, the mapping between words and objects was ambiguous, 
and only around 5% of the co-occurrences were “correct”. The model was tested by 
interrogating word-referent association probabilities calculated across the entire 
corpus. Like children, the model learned to associate words with their correct 
referents with a high degree of accuracy. Further, a second model, which could use its 
existing lexical knowledge to support the acquisition of new words, exhibited a 
vocabulary spurt. These models made important predictions about infants’ word 
learning; in particular, that word learning is an incremental process, with word-object 
mappings starting out weak, but becoming stronger with experience. This “partial 
knowledge” account of word learning has recently been empirically tested and 
supported (Yurovsky, Fricker, Yu, & Smith, 2014), illustrating how models, with 
their explicit specification of mechanism, can shed light on real-world learning. 
 
Taken together these two models illustrate how modeling can force us to be 
absolutely clear what pre-existing knowledge and cognitive structures are necessary 
for learning. For example, on any given learning event both Yu’s (2008) model and 
that of Xu and Tenenbaum (2007) make word-object mappings based on prior 
association probabilities. The critical difference is that in Bayesian models, those 
prior probabilities are determined a priori by the modeler, while in the associative 
model, prior probabilities are learned from naturalistic input. Thus, Yu’s model relied 
on a probabilistic mechanism, but did not require the complex inferential processes or 
built-in knowledge central to Bayesian methods. More generally such differences 
between Bayesian and associative models once again speak to the core-versus-learned 
knowledge debate, with the former assuming native knowledge and the latter 
assuming knowledge can be learned from the rich statistics of the environment. 
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Models are therefore uniquely positioned to make important contributions to theory: 
modeling forces us to specify assumptions not only about the processing mechanisms, 
but also about the representation and availability of data to the learner.  
 
Timescales of language development 
 
As described by Horst (this volume), from around 18 months, when infants are shown 
an array of two known and one novel object and are asked for a novel label (e.g., 
“Which one is the dax?”) they often select the correct referent, i.e., the novel object. 
Traditionally this ability has been explained by intrinsic constraints such as mutual 
exclusivity (the knowledge that an object only has one name; e.g., Markman, 1991). 
McMurray, Horst & Samuelson (2012) described a computational model in which 
referent selection arises from real-time competition between referents instead of such 
higher-level inferential processes. This model also addressed the finding that even 
when children select the correct referent, they often do not show long-term retention 
of the label-referent mapping (Horst & Samuelson, 2008). Specifically, the model 
demonstrated that while the mapping problem can be solved in-the-moment, this 
online association leads to only minimal strengthening of the word-object connection; 
to learn a robust word-object association takes many encounters of the same mapping. 
Thus, this model emphasizes the importance of cross-situational associative learning 
to capturing the real behavior demonstrated by infants in empirical studies of word 
learning. 
 
Overall, by providing a mechanistic, low-level explanation of referent selection, 
McMurray et al. (2012) showed that observed behavior in children does not have to 
rely on high-level inferential processes (see also Twomey, Morse, Cangelosi, & 
Horst, 2016). As in Yu (2007) in this work an apparently complex behavior can 
emerge from the interaction between two timescales of associative word learning: in-
the moment referent selection, and cross-situational learning. 
 
Summary 
 
In this brief chapter it has been impossible to provide an exhaustive overview of 
computational models of word learning. First, a number of other neural network 
models not covered here have addressed different aspects of word learning (e.g., 
Colunga & Smith, 2000; Regier, 2005). Second, while we have mentioned two non-
connectionist modeling approaches to word learning in Xu and Tenenbaum’s  (2007) 
Bayesian model and Yu’s (2008) associative learner, there remain a range of other 
informative formal approaches to understanding word learning. One such approach 
consists in pure mathematical modeling. Notable here is McMurray’s (2007) work on 
the vocabulary spurt, which demonstrates that the patterns of vocabulary acquisition 
commonly observed in children can be captured by a simple learning system situated 
in a structured learning environment without internal changes to the system that 
accelerate learning. Further, semantic network approaches have demonstrated that the 
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age at which a word is acquired is influenced by the density of a word’s semantic 
network and the diversity in the linguistic contexts in which this word typically occurs 
(Hills, Maouene, Riordan, & Smith, 2010). Equally, Dynamic Neural Field models, a 
type of model related to the connectionist approach that focuses on how learning can 
occur on the basis of interactions between neural excitation and inhibition in large 
networks, have successfully captured a number of phenomena in early word learning 
(e.g., Samuelson, Kucker, & Spencer, 2016; Samuelson et al., 2009; Samuelson, 
Smith, Perry, & Spencer, 2011). 
 
Despite progress in these modeling approaches, currently neural network models have 
arguably made the strongest contribution to our understanding of the mechanisms of 
the development of word learning, providing explicit mechanistic accounts of often 
surprising phenomena, and generating predictions that are subsequently captured in 
empirical studies with infants and children. Their strength lies in the ability to form 
complex associations (between words and objects, motor and auditory representations 
and so on) and to learn these multimodal representations from experience, thereby 
showing sensitivity to the statistical structure of their learning environment and the 
specific experiences to which they are exposed. In this way these models have shown 
how the richness of the stimulus can overcome the need for innate learning biases and 
how specific learning trajectories can be explained by interactions between domain-
general learning mechanisms and the precise structure of the learner’s environment.  
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