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Evolving Fuzzy Systems from Data Streams in Real-Time
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Abstract— An approach to real-time generation of fuzzy
rule-base systems of eXtended Takagi-Sugeno (xTS) type from
data streams is proposed in the paper. The xTS fuzzy system
combines both zero and first order Takagi-Sugeno (TS) type
systems. The fuzzy rule-base (system structure) evolves starting
‘from scratch’ based on the data distribution in the joint
input/output data space. An incremental clustering procedure
that takes into account the non-stationary nature of the data
pattern and generates clusters that are used to form fuzzy rule
based systems antecedent part in on-line mode is used as a first
stage of the non-iterative learning process. This structure proved
to be computationally efficient and powerful to represent in a
transparent way complex non-linear relationships. The
decoupling of the learning task into a non-iterative, recursive
(thus computationally very efficient and applicable in real-time)
clustering with a modified version of the well known recursive
parameter estimation technique leads to a very powerful
construct — evolving xTS (exTS). It is transparent and
linguistically interpretable. The contributions of this paper are: i)
introduction of an adaptive recursively updated radius of the
clusters (zone of influence of the fuzzy rules) that learns the data
distribution/variance/scatter in each cluster; ii) a new condition
to replace clusters that excludes contradictory rules; iii) an
extended formulation that includes both zero order TS and
simplified Mamdani multi-input-multi-output (MIMO) systems;
iv) new improved formulation of the membership functions,
which closer resembles the normal Gaussian distribution; v)
introduction of measures of clusters quality that are used to form
the antecedent parts of respective fuzzy rules, namely their age
and support; vi) experimental results with a well known
benchmark problem as well as with real experimental data of
concentration of exhaust gases (NOX) in on-line modeling of car

engine test rigs.
O information technology has not only led to an enormous
increase of the speed of computers, but also to
enormous amount of data produced and being produced with a
very fast rate. Examples of data overload are the Internet,
genome information, complex industrial processes etc. [1].
Such high-volume, non-stationary data streams bring new
challenges to the well established statistical learning methods
[2]. In particular, data streams cannot be analyzed in a batch
mode, since storing the complete data is often practically
impossible. Instead, systems have to be developed that extract
tractable knowledge from the data in real-time.
According to a widely accepted definition, knowledge

1. INTRODUCTION
VER the last two decades, the fast development of
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generation or discovery refers to the non-trivial process of
identifying valid and understandable/interpretable structure in
the data [1]. From control point of view, this equates to the
system structure identification, a process that is usually
ignored, while the attention is paid to the system parameter
identification (tuning, adjustment, adaptation). Since the data
are non-stationary it is logical to assume the structure of the
data to be also dynamic, that is, to evolve.

Very often tuning and adjustment are called ‘adaptation’ [3],
‘self-organisation’ [4], [5] or even ‘evolution’ [6]. It should be
noted that all of the above mentioned approaches assume the
fuzzy rule-based system structure to be fixed. The Oxford
Dictionary gives the following definition for ‘evolve’: ‘unfold;
develop; be developed, naturally and gradually’ [7, p.294].
Contrast this to the more general ‘evolutionary’ [same page
and source] ‘development of more complicated forms of life
(plants, animals) from earlier and simpler forms’, which is
naturally related to the ‘genetic’ [7, p.358] ‘branch of biology
dealing with the heredity, the ways in which characteristics are
passed on from parents to offspring.’

We use further the term ‘evolving’ fuzzy systems in the
sense of ‘gradual development’ of the fuzzy systems structure
(rule-base) and their parameters. This new paradigm
introduced for neural networks in 1990s [8] and for fuzzy
rule-based systems in 2001 [9]-[11] can be regarded as a
higher level adaptation. Indeed, conventional adaptive
systems known from control and system theory [12] deal
predominantly with parameter adaptation of linear systems.
By comparison, so called evolutionary algorithms (genetic
algorithms [13], genetic programming [14] etc.) mimic the
evolutionary processes that take place in populations of
individuals and use operators based on paradigms such as
'crossover', 'mutation', 'selection', 'recombination' of
chromosomes as mechanisms of adaptation. The emerging
evolving fuzzy and neuro-fuzzy systems paradigm
[9]-[11],[15]-[25] mimics the evolution of individuals in
nature during their life-cycle, specifically the autonomous
mental development typical of humans: learning from
experience, inheritance, gradual change, knowledge
generation from routine operations, rules extraction from the
data. A trivial analogy is the way people learn during their life
— starting with an empty rule-base they learn new rules during
their life from experience and based on the data streams that
their preceptors generate to the brain. The development of the
rule-base is gradual, but the rules are not fixed or pre-defined.
We generate new rules when new facts that can not be
described by the existing rules and when they are descriptive
enough, not to be ‘one-off’” outliers.
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It is well known that fuzzy rule-based (FRB) systems are
universal function approximators [27]; they are suitable for
extracting interpretable knowledge therefore, they are a
promising framework for designing effective and powerful
prognostic, classification, and  control systems
[91-[11],[15]-[24].

Traditionally, FRB systems’ learning has been addressed
for the batch (off-line) case and it was assumed to be fixed.
The attention has been shifted towards the evolving design of
FRB systems since 2001 [9]-[11], [26]. Several papers has
been published that interpret and improve the evolving fuzzy
rule-based (eR) systems approach [9]-[10] and the fully
recursive version specific to Takagi-Sugeno models, called
eTS (from evolving Takagi-Sugeno models) [11]. The present
paper can be considered as another contribution to the
development of this concept that has its roots in the papers and
the monograph published in the beginning of the current
century [9]-[11]. Note, that [11] was submitted in 2002 and
[10] was submitted in 2001.

One can group the FRB learning methods into two broad
categories [1]:

direct (single phase) learning;

Supervised learning addresses the identification task as a
non-linear optimization problem that is solved
numerically [3],[5],[6];

indirect (two phases) learning;

this approach presumes initial data partitioning (phase A)

using  unsupervised data  clustering = methods
[9]-[11],[15]-[20] and system parameter identification
(phase B) using supervised learning method such as
recursive least squares, RLS.

According to the evolving systems paradigm [9]-[10], the
structure of the FRB is not fixed, it gradually evolves (can
expand or shrink). In this paper, the spreads of the
membership functions of the fuzzy sets that also represent the
projections of the radius of the zone of influence of the
clusters onto the inputs axes are considered to be adaptive,
recursively updated, too. The quality of the clusters and fuzzy
rules respectively in terms of their age and support can be
recursively calculated on-line and used to automatically revise
the relevance of the rules. Quality of the clusters/rules
parameters age and support are an additional leverage to
update the rule base.

The proposed exTS FRB system has been tested on a
typical benchmark problem of Mackey-Glass chaotic
time-series prediction as well as on real data for designing an
intelligent sensor for exhaust gases (NOX) concentration
real-time estimation in car engine tests.

II. THE STRUCTURE OF THE EXTS
We consider an eXtended case of Takagi-Sugeno models
(xTS) that are multi-input-multi-output (MIMO) [16] and can
be described as a set of fuzzy rules of the following form:

R :IF (xl is.closeto.x!’ )AND. : .AND(xﬂ is.closeto.x!” )
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THEN(y' = f") (1)

where R’ denotes the i fuzzy rule; i=/1,N]; N is the
number of fuzzy rules; x =[x,,x,,...,x,]" is the input vector;

n
(x ; .is.close.to.x;*)denotes the i” fuzzy sets of the j” fuzzy rule;

th

j=[1,n]; +" is the focal point of the /" rule antecedent,

Y =¥, ¥4y ¥h 1 is the m-dimensional output of the i

linear sub-system.
Note that the type of the fuzzy rule depends on the type of
the consequent:
a) Itis of first order TS type [28] when the consequents are
linear:

fr=xir x] =[]
2

(2a)
i i i
Ay Oy Qo
i i i
= ay  ap a,,
a, o al
where nt n2 nmlare the parameters of the m

local linear sub-systems
b) It is of zero order TS type when the consequents are

singletons (crisp scalar values):
fi — ai

i i i
where 4 _[am 0%

(2b)
a,,, ]T are the parameters of the m

local linear sub-models.

Note that equations (1) and (2b) describe sM model while
the conventional Mamdani type fuzzy model assumes fuzzy
consequents [29] apart from the trivial case when several
consequents are identical (then these consequents count once
in the sM and several times in the zero-order TS model).

The overall output of the exTS, y is formed as a collection
of loosely/fuzzily combined multiple simpler sub-systems, ).
The degree of activation of each rule is proportional to the
level of contribution of the corresponding sub-system to the
overall output of the exTS.

N . .
y= DAy
i=1

where ' represents the output of the i sub-model; A is the
normalized activation level of the i” rule; 7 is the firing level
of the i rule:

[T
ﬂ’i = szln
ZH/”; (x;)

J=1 j=1

)

4)

where ,u; is the membership value of the ;” input x;,
j=[1,n]), to the i" fuzzy set ,i=[1,N];
The membership function can be of any form. The Gaussian

bell function is widely accepted due to its generalization
capabilities (it resembles normal distribution and covers the



whole domain of the variables, thus avoids potential
computational problems):

*
Hx—x' )
J

i 2

pi=e 5)

)2 , i=[I,N] j=[l,n] is the spread of the
membership function, which also represents the radius of the
zone of influence of the cluster/rule.

Note that this formulation of the membership function
differs from the one used in the off-line subtractive clustering
[30] and its on-line version [11] and is closer to the normal
Gaussian distribution (to the extent of a constant). In section
IIT a new formula for recursive learning of the spread/radius is
introduced as well as a new condition for replacement of the
clusters that is formulated over the input data space only and
thus avoids contradictory rules contributing to the
improvement of the interpretability of the model.

where (rj

III. EVOLVING XTS FROM DATA IN REAL-TIME

A. Phase A: partitioning input/output data space
Each one of the sub-systems of the exTS operate in a certain
sub-area of the input/output data space, z :[xT; yT]T; zeR™™.

To identify these regions one can employ real-time clustering
thus effectively learning the antecedent part of the fuzzy rules
(1)-(2). Some of the published approaches cluster the input
data only [20],[22], but in order to find regions of similar
functional input-output dependence, y=f(x) the joint
input/output data space needs to be considered.

Two parameters are needed to define a membership
function of the type (5), namely the focal point, x'"and the

i*

spread, rji . If locate the focal points of the rules, x'" at the

cluster centre (note, only coordinates for the inputs are used to
define the focal point although coordinates of the outputs are

also used in the clustering) and if determine the spread, r/.i

based on the data the antecedent part of the fuzzy rules are
defined.

The real-time evolving clustering approach (eClustering)
used in this paper stems from the well known subtractive
clustering [30] and Mountain clustering approaches [31]. This
method has the following specific features that separate it
from the other clustering approaches:

v' Tt is non-iterative (no search is involved);

v It has very low memory requirements, because
recursive calculations are used,

v' Tt is fully unsupervised in the sense that number of
clusters are not pre-defined (they are determined based
on the data density alone);

v' it can start ‘from scratch’ from the very first data
sample assumed to be the first cluster centre;

v' changes of the cluster number and parameters are

gradual, incremental, not abrupt

v’ itis problem-dependant-parameters free and the radius

of influence of the clusters is learning adaptively from
the data distribution/ variance per cluster.

This clustering method is based on the recursive calculation
ofthe value called potential [11]. Potential calculated at a data
point is a function of accumulated proximity which represents
the density of the data surrounding this data point:

P(z)= 1

(6)

nt+mk—1 > ( )
1+ ”z —z”' Nk—1

;; i k K

where Pi(z;) denotes the potential of the data point (z;);
calculated at time k starting from k=2; n+m defines the
dimensionality of the input/output data space (zeR""™)

This approach is prototype-based (some of the data points
are used as prototypes of cluster centers). A number of
algorithms for neural networks and neuro-fuzzy systems
learning (such as GWRNN [8], GAP-RBF [25], SONFIN [24],
EFuNN [21], SOFNN [22]) published recently use
mean-based clustering. The centers are located at the mean,
which, in general, does not coincide with any data point.
Therefore, these approaches usually form large number of
clusters that one needs later to ‘prune’ [25]. These clustering
approaches are thresholds-based and the result highly depends
on the selection of the appropriate threshold(s).

The clustering procedure starts ‘from scratch’ assuming
that the first data point available is a centre of a cluster This
assumption is temporary and if a priori knowledge exists the
procedure can start with an initial set of cluster centers that
will be further refined. The coordinates of the first cluster
centre are formed from the coordinates of the first data point

(x" <= x,). Its potential is set to the ideal value, P;(z")—1.

Starting from the next data point which is read in real-time,
the following steps are performed:

1) calculate its potential, Px(zk):;
2) update the potential of the existing
cluster centers (by definition their

potential will be affected by adding a new
data point);

calculate the increment of the potential
the new data point brings in respect to all
previously existing centers. Based on this
comparison and the membership to the
existing clusters take one of the following
actions:

add a new cluster center based on the
new data point;

a)

remove a cluster that describes well
the new point that brings an increment
in the potential; replace it with a
cluster formed around the new point;

ignore (do
structure) .

b)

c) not change the cluster
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These basic steps are repeated for the next data sample




(k¢—k+1) until there is no more available data or until a
requirement to stop the process is received.

Step 1) includes the recursive calculation of the potential
of the new data point as described in [11] by:

1
1+ +(5,~ 27 )/lk-1)

A =r§121{)2 ﬂinﬁ#)z

B(z)= (7

n+m . . =
PIAHE S
=

i=l j=1 j=l

Ve =
Where ;
Values ¢ and ), represent accumulated projections in

E)

each dimension of the data space and can easily be calculated
based on the availability of the current data point,

n+m

T A
WZy ) only. The values f3, and I require

_( 1 2
Z, =\Zp,2; 5
accumulation of past information. This can, however, be

stored in two variables only (the scalar, @1 and the

(n+m)-dimensional  vector-column Ez(fz,ff,...fz+m)r )-

Using these (n+m+1) values stored from the previous
calculations one can recursively calculate the accumulated

quantities /3, aner; thus the potential of the current point
from (7) without memorizing all of the previous points:
B =B+ 5 =0;

VTV J /R
Li=0,+z, I =0

®)

()]
Step 2) The potential of a centre (z) can be calculated
recursively as described in [11]:

P)= (e=DR.()

n+m

* * * 2
k=24 @) +B,E)Y ]~
a (10)
Steps 3) It should be noted that originally this condition
was borrowed and modified from the off-line subtractive
clustering approach [30] and was formulated in [9],[11] as:

EEACHE (11)

max P, (z")

+ §min > 1

r

where J,,;, represents the distance to the nearest cluster centre.

Different extensions of this condition were proposed later
by Victor and Dourado and published in [18].

In the present paper we use the following formulation of
this step of the algorithm:

IF (the new data point brings an increment in the potential
in respect to already existing centers:

>0’w"—[lN]
Neow' 5

THEN (a new rule is created around this point):

(12)
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where AP, = P,(z,)—P,(z"))

If condition (12) does not hold we do not change cluster
structure. If condition (12) holds and this point is described
well (membership of 1/3™ which resembles one sigma region
in Gaussian distribution) by already existing centers:

i =[N, w/>1/3 Vjj=[,n] (14

then we replace this cluster by this new point (refresh the

(13)

P*
centre), x' < X,

Note that the original approach [9]-[11] and its
modifications [15]-[18] consider a constant radius/spread, r.
In [16] the spread is assumed to be different per input variable
# but were fixed, not adapting with the data. Additionally, note
that » is used in the formulation of the membership functions
(equation (5)) which concern inputs only while the distance;
Omin 18 OVver the joint input-output data space. We argue that if
consider input data space only for the condition (14)
contradictory rules will be avoided. If consider the distance in
the joint input-output data space as a criteria for replacing the
clusters rules that have similar antecedent parts but very
different consequents parts may become cluster centers, which
will lead to a rule-base with contradictions. Condition (14)
replaces such rules. The presumption is that it is better not to
allow contradictory rules to be created at the point of entry to
the rule-base instead of allowing them at first instance and
then simplifying the rule-base.

B.  Quality measures of the generated clusters

In a real-time application only cluster centers are kept in the
memory, while all the other data points are discarded. The
question arises ‘how well these centers represent the data that
were discarded from the memory?’. One way to address this
issue is by monitoring properties of the clusters that are
formed. These include their radius (zone of influence),
support and age.

Support of the cluster (rule) is simply the number of data
points that are in the zone of influence of that cluster/rule. It
can be determined by assigning each data point at the moment
it is first read to the nearest cluster:

N
S'«S"+1 for l=argmi11“zk—zi*“ (15)
i=1

where S'is the support of the I" cluster; I=/1,N]

Due to the incremental nature of the approach the relevance
of a cluster (respectively fuzzy rule) may change. One of the
measures of the relevance of the rule is its support and
especially the ratio of the support in terms of the overall
number of data points available at a moment of time, k. One
can introduce a simple rule for ignoring (practically, removing)
fuzzy rules that have very low support:

IF(S! 1k < &)THEN(Z «0) (16)



This rule is optional. The value of the threshold € represents
the proportion of the data assigned to the i cluster/rule.

In this paper a more efficient and more flexible recursive
formulation of the radius is introduced that is more realistic.
Indeed, in real cases, the spatial distribution of the samples is
difficult to be pre-estimated and it is time varying.

A recursive formula for adaptive calculation of the radius
based on the local spatial density is introduced as follows:

! ! 1= Vol =17 = Vo I+
Py +(=ploysr, = l—argmn*‘zk -z H (17)
il

Tk =

where pis a constant that regulates the compatibility of the
new information with the old one. Value of p=1/2 means that
the new information is as valuable as the existing one. This

value gives very good performance results and can be adopted
as a non problem-dependent, generic constant; Uj.k is the

local scatter over the input data space [15] that resembles the
variance:

5

2

=1

1
S,
When a new cluster/rule is added, N«—N+1, its local scatter

[15] is initialized based on the average of the local scatters for
the existing clusters (rules):

1,
ij+1 _NZJ}]‘ ,j=[1,n]
i=1
These measures of the cluster quality can be used for
real-time management of the rule-base and as an additional
decision when generating new clusters/fuzzy rules.
Note that the spreads of the fuzzy membership functions,

i* 2

X

i

O'jk—

oy =1 (18)

_le.
J

(19)

I’; (respectively the radius of the clusters) are different for

different inputs, j=/1,n] as well as for different fuzzy rules,
i=[I,N]. This makes possible to define not just
hyper-spherical, but also hyper-ellipsoidal clusters that
recursively adapt their shape to the spatial information
brought in by new data samples. This is illustrated in Fig. 2 as
opposed to Fig. 1.

Another parameter that describes the properties of the
clusters is the so called age [15]. It can be defined as the

Radius at sample No.70, eTS

Dimension 2 (x2)

D‘A 06
Dimension 1 (x1)

Fig. 1. Cluster radius (membership function spread) for the
Mackey-Glass benchmark problem using eTS [11]
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number of data samples minus the average sum of the time
indices of the data samples:

Radius at sample No.70, xTS

Dimension 2 (x2)

.
1
i

o
i
i
P
i
i

06
Dimension 1 (x1)

Fig. 2. Cluster radius (membership function spread) for the
Mackey-Glass problem; r are different for different i=/1,N] and j=/1,n]
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(k+1)

N/
where A;i = Zl ; denotes the accumulated time of
i=1

sI=[1,N]

age, =k — (20)

arrival; I ; denotes the index of the i data sample (the time
instant when this data point was read).

The accumulated time of arrival is calculated in a similar
way to the support (16), but in respect to the indices:

L1l +k for i=argminz,—="|
X X =argmin|z, —z (21)
i=1

In the extreme case, when all of the data samples go into the
same cluster/rule, the 4 is determined as a sum of the
arithmetic progression:

4 =142+ k= DE (22)

The age of the cluster has values in the range (0;k] with
values close to 0 meaning that recent data is included in this
(young) cluster and values close to k£ meaning that no recent
data is included in this (old) cluster. Old clusters can be
replaced by data that have high increment of the potential.

C. Phase B: Learning consequent part’s parameters

Once the antecedent part of the fuzzy model is determined
and fixed the identification of parameters of the consequent
part, 7 can be solved as a RLS estimation problem as detailed
in [11]. It should be noted that the real-time algorithm must
perform both tasks (data partitioning and parameter
estimation) at the same time instant (per data point) for a time
significantly shorter than the sampling period.

In this way, the antecedent part of the rules can be
determined in a fully unsupervised way, while the consequent
part requires a supervised feedback. The supervision is in the
form of error feedback which guarantees optimality (subject
to fixed rule base structure) of the parameters of the
consequent part.



The overall output can be given in a vector form [11]:
y=y'6 23)

where 0 = [(HI)T,(HZ)T,...,(R'N)T }T is a vector formed by
the sub-system parameters; w =[A' x|, A°x! .., A x]"
is a vector of the inputs that are weighted by the normalized

activation levels of the rules, A’ i=[1,N] for the first order

TS system (2a) and 7 =[A',A%,..., A" ]" for the sM system,
(2b).

The optimal in least squares sense solution can then be
found applying weighted RLS, wRLS as detailed in [11]:

Oi =01+ Coy, (v~ Oir) (24)

T
c, =c, ~SeWViCii =23, (25)

1+l//kTCk—ll//k

where @ =(,C is a N(n+M)xN(n+M) co-variance matrix;

C =0, Q is a large positive number; / is the identity matrix.

IV. EXPERIMENTAL RESULTS

The proposed exTS model was tested on a well known
benchmark problem and on a real data set.

A. Mackey-Glass time-series data set

The chaotic time series is generated from the Mackey-Glass
differential delay equation defined by [11]:

ds  02s(t-1)

= —0.1s(¢
ot 1+s5°(t-1) ®
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The following experiment was conducted: 3000 data points,
for £=201:3200 are extracted from the time series and used
as training data; 500 data points, for = 5001:5500 , are used
as testing (validation) data. The learning mechanism was
stopped for the testing data. The aim is to predict the value
s(t+AT). The so-called non-dimensional error index (NDEI)
defined as the ratio of the root mean square error (RMSE) over
the standard deviation of the target data is used to compare
model performance as well as the RMSE itself. The results for

TABLEI
RESULTS FOR MACKEY-GLASS PROBLEM; AT=85

Algorithm Radius Rules NDEI
exTS adaptive 10 0.331
exTS, € - default adaptive 9 0.361
eTS [11,18] 0.25, fixed 9 0.372
RAN [32] N/A 113 0.373
ESOM [20] N/A 114 0.32
EFuNN [21] N/A 193 0.401
DENFIS [20] adaptive 58 0.276

AT = 85 are tabulated in Table I. The problem-independent
parameter Q=1000; £=3% is an optional parameter that can be
used to further improve model structure. It should be noted
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that in [19] the comparison with eTS has been done ([19],
Table 2, p.1438), but the results included in that Table
concern prediction 6 steps ahead, while the results for eTS [11]
and DENFIS [20] are for 85 steps ahead, which is completely
different problem.

Rule Number Evolving of Mackey-Glass with exTS

Total Rule Number

2 4

| | | | |
0 500 1000 1500 2000 2500 3000
Sample Number

Fig. 3. Evolution of the rule-base (xTS with e=3%)

From the Table I it is obvious that the proposed exTS type
FRB system provides better performance in terms of higher
precision, lower number of fuzzy rules and lower number of
parameters required.

B. NOx emissions in car-engine tests on-line modelling

The second test concerns real data (courtesy of Dr. E.
Lughofer, Linz, Austria) generated from tests with real car
engines. It concerns the problem of real-time modelling NOx
emissions from the exhaust in a car engine using the following
four input attributes measured in real-time:

® N - engine rotation speed, rpm

® P2 - pressure offset in cylinders, bar

® T -engine output torque, Nm

®  Nd - speed of the dynamometer, rpm

The non-linear dependence of the following form is
expected and the proposed exTS has been used to find it based
on the data alone, starting ‘from scratch’:

NOx, = f(N, ,,P2, 5,T, s,Nd, ) (28)

The sampling period of 1,s has been used and a prediction
4,s ahead was made. The data set consists of 1491 samples
824 of which have been used for validation only (the evolution
of the xTS has been stopped. The results have been compared
with the similar test published before [17] using FLEXFIS and
eTS. The performance is similar, but the advantage of exTS is
the more flexible way of describing the fuzzy sets which
allows a better linguistic interpretation.

TABLE II
RESULTS FOR NOX CAR ENGINE DATA SET

Algorithm Radius Rules Correlation NDEI
exTS, ¢ - default adaptive 5 0.916 0.4032
eTS [17] fixed; 0.5 3 0.915 0.40567
FLEXFIS [17] fxed 4 0.911 N/A




V. CONCLUSION

The proposed evolving fuzzy modeling approach which
concerns eXtended Takagi-Sugeno (exTS) fuzzy systems with
its ability to have a higher level of gradual adaptation to the
environment and to the changing data patterns (to evolve) is an
efficient tool for complex modeling, prediction, and
classification tasks that exist in modern process industries,
finance, defense and other areas.

A significant novelty is the recursive formula for adaptation
of the radius (spread of the membership functions) in a
data-driven fashion. It allows flexible clusters with an
evolving shape to be build that better match the data
distribution. A new condition is also introduced to replace
clusters in order to avoid contradictory rules at the point of
entry to the rule-base. The quality of the clusters is monitored
and controlled on-line by the parameters age, support, and
their variable recursively adaptive radius.

The experimental results with a well known benchmark
problem of Mackey Glass chaotic time series and a real data
set for NOx emissions from car engines on-line modeling
demonstrate the superiority of the proposed exTS FRB system
in terms of precision and compatibility (thus interpretability).

Evolving FRB systems, introduced in [9]-[11] and further
developed here, represent a very powerful concept that can
address problems of high level adaptation of non-linear
complex systems to non-stationary environment and to
internal changes in these systems. Methods based on the way
humans deduct knowledge from experience, this knowledge
gradually evolves and is inherited are an efficient tool to cope
with the enormous amount of information that is generated
with fast rates. A wide range of applications of this approach is
published in a number of parallel papers.

VI. ACKNOWLEDGEMENTS

The authors would like to thank Dr. E. Lughofer for kindly
providing the experimental data from the car engines, Dr. D.
Filev for the very insightful comments and the overall support,
as well as the anonymous referees for their useful comments.

REFERENCES

U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, From Data Mining to
Knowledge Discovery: An Overview, Advances in Knowledge
Discovery and Data Mining, MIT Press. 1996.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Heidelberg,
Germany: Springer Verlag, 2001.

J.SR. Jang, “ANFIS: Adaptive Network-based Fuzzy Inference
Systems”, IEEE Trans. on Systems, Man & Cybernetics, v.23 (3),
pp.665-685, 1993.

T. J. Procyk, E. H. Mamdani, “A linguistic self-organizing process
controller”, Automatica, 1979, pp. 15-30.

K. Shimojima, T. Fukuda, Y. Hashegawa (1995) Self-Tuning Modeling
with Adaptive Membership Function, Rules, and Hierarchical
Structure based on Genetic Algorithm, Fuzzy Sets and Systems, v.71,
pp-295-309.

P. J. Bentley, Evolving Fuzzy Detectives: An Investigation into the
Evolution of Fuzzy Rules, In: Suzuki, Roy, Ovasks, Furuhashi and
Dote (Eds), Soft Computing in Industrial Applications, Springer Verlag:
London, UK, 2000.

(1]

(2]

[3]

(4]

(5]

(6]

35

[71 A. S. Hornby, Oxford Advance Learner’s Dictionary, Oxford
University Press, 1974.
[8] B. Fritzke “Growing cell structures — a self-organizing network for

unsupervised and supervised learning,” Neural Networks, vol. 7 (9)

pp-1441-1460, 1994.

P. Angelov, R. Buswell, “Evolving Rule-based Models: A Tool for

Intelligent Adaptation”, Proc. Joint 9" IFSA World Congress and 20"

NAFIPS Intern. Conf., Vancouver, BC, Canada, July 25-28, 2001,

IEEE Press, ISBN 0-7803-7079-1, pp.1062-1066.

P. Angelov, Evolving Rule-based Models: A Tool for Design of

Flexible Adaptive Systems. Berlin, Germany: Springer Verlag, 2002.

P. Angelov, D. Filev, "An approach to on-line identification of evolving

Takagi-Sugeno models”, [EEE Trans. on Systems, Man and

Cybernetics, part B, vol.34, Nol, pp. 484-498, 2004.

K. Astroem, B. Wittenmark, “Computer Controlled Systems: Theory

and Design,” NJ, USA: Prentice Hall,1984.

[13] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, Berlin, Germany: Springer Verlag, 1996.

[14] J.Koza, Genetic Programming: On the Programming of Computers by

Means of Natural Selection, USA: MIT Press,1992.

P. Angelov, D. Filev, “Simpl_eTS: A Simplified Method for Learning

Evolving Takagi-Sugeno Fuzzy Models,” The 2005 IEEE Intern. Conf.

on Fuzzy Systems FUZZ-IEEE, Reno, NE, USA, 2005, pp.1068-1073.

P. Angelov, C. Xydeas, D. Filev, “On-line Identification of MIMO

Evolving Takagi-Sugeno Fuzzy Models, Intern. Joint Conf. on Neural

Networks and Intern. Conf. on Fuzzy Systems”, ICNN-FUZZ-IEEE,

Budapest, Hungary, 25-29 July, 2004, pp. 55-60, ISBN 0-7803-8354-0

P. Angelov, E. Lughofer. P. E. Klement, “Two Approaches for Data-

Driven Design of Evolving Fuzzy Systems: eTS and FLEXFIS,” The

2005 NAFIPS Ann. Conf., June 2005, Ann Arbor, MI, USA, pp.31-35.

P. Angelov, Victor, J., Dourado, A., Filev, D., "On-line evolution of

Takagi-Sugeno Fuzzy Models", Proc. Of the 2nd IFAC Workshop on

Advanced Fuzzy/Neural Control, 16-17 September 2004, Oulu,

Finland, pp.67-72.

K. Kim, J. Baek, E. Kim, M. Park, “TSK Fuzzy model based on-line

identification,” Proc. 11" IFSA World Congress, Beijing, China, 2005,

pp.1435-1439.

N. Kasabov, Q. Song “DENFIS: Dynamic Evolving Neural-Fuzzy

Inference System and Its Application for Time-Series Prediction,”

IEEE Trans. on Fuzzy Systems, Vol.10 (2), pp. 144-154, 2002.

N. Kasabov, “Evolving fuzzy neural networks for on-line

supervised/unsupervised, knowledge-based learning,” /EEE Trans.

SMC - part B, Cybernetics 31, 902-918, 2001.

G. Leng, T. M. McGuinty, G. Prasad, “An approach for on-line

extraction of fuzzy rules using a self-organizing fuzzy neural network,”

Fuzzy Sets and Systems, vol. 150 (2), 2005, pp.211-243.

F.-J. Lin, C.-H. Lin, P.-H. Shen, “Self-constructing fuzzy neural

network speed controller for permanent-magnet synchronous motor

drive,” IEEE Trans. on Fuzzy Systems, Vol.9 (5), pp. 751-759, 2001.

C.-F. Juang, X.-T. Lin “A recurrent self-organizing neural fuzzy in-

ference network,” IEEE Trans. on Neural Networks, 10, 828-845, 1999

G.-B. Huang, P. Saratchandran, N. Sundarajan, “A generalized

growing and pruning RBF (GGAP-RBF) neural network for function

approximation,” /JEEE Trans. on NN, vol.16 (1) 57-67, 2005.

D. Filev, “Rule-base guided adaptation for mode detection in process

control”, Proc. Joint 9" IFSA World Congress and 20™ NAFIPS Intern.

Conf., Vancouver, BC, Canada, July 25-28, 2001, vol.2, pp. 1068-1073,

IEEE Press, ISBN 0-7803-7079-1.

L.-X. Wang “Fuzzy Systems are Universal Approximators,” Proc.

FUZZ-IEEE, San Diego, CA, USA, pp.1163-1170, 1992.

T. Takagi, M. Sugeno, “Fuzzy identification of systems and its

application to modeling and control”, /EEE Trans. on Syst., Man &

Cybernetics, vol. 15, pp. 116-132, 1985.

R. R. Yager, D. P. Filev, Essentials of Fuzzy Modeling and Control,

NewYork, USA: John Wiley and Sons, 1994.

[30] S. L. Chiu, “Fuzzy model identification based on cluster estimation,”
Journal of Intelligent and Fuzzy Syst.vol.2, pp. 267-278, 1994.

[31] R. R. Yager, D.P. Filev, “Leaming of Fuzzy Rules by Mountain
Clustering,” Proc. of SPIE Conf. on Application of Fuzzy Logic
Technology, Boston, MA, USA, pp.246-254,1993.

[32] J. Plat, “A resource allocation network for function interpolation,”
Neural Computation, vol. 3 (2) 213-225, 1991.

(9]

[10]

[11]

[12]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]



